Abstract

Pervious concrete has been reported as a viable solution to reduce stormwater run-off, the heat-island effect, road noise, and pavement flooding. Previous researchers have focused on analysing the structural properties and functionality of pervious concrete. However, relatively few studies have been conducted into the addition of supplementary cementitious materials (SCMs), such as calcined clay, in pervious concrete and its effect on long-term durability. This paper has studied the effect of calcined clay pozzolan as a partial substitute for Portland cement in pervious concrete, together with the influence of coarse aggregate size. A water–binder ratio of 0.4 and aggregate–binder ratio of 4.0, as well as a superplasticiser content of 0.95%, were maintained for all mixes. Two sizes of coarse aggregates were used for this study: 9.5 mm and 20 mm. CEM-I cement was partly substituted with calcined clay in dosages of 0 to 30% in replacement intervals of 5%. The mechanical tests conducted included the split tensile test, compressive strength test, and flexural strength test. Durability measurements such as the rapid chloride permeability test (RCPT), thermal conductivity and sulphate resistance tests were also carried out. The mechanical properties of the pervious concrete followed a similar trend. The results showed that at 20% replacement with calcined clay, the compressive strength increased by 12.7% and 16% for 9.5 mm and 20 mm aggregates, respectively. The flexural strength improved by 13.5% and 11.5%, whereas the splitting tensile strength increased by 35.4% and 35.7%, respectively, as compared to the reference concrete. Beyond 20% replacement, the tested strengths declined. The optimum calcined clay replacement was found to be 20% by weight. Generally, pervious concrete prepared with 9.5 mm obtained improved mechanical and durability properties, as compared to those of 20 mm aggregates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.