Abstract

Gd2O3:Tb3+ nanoparticles were synthesized by using diethylene glycol as a solvent and doped with 3 mol% K+ ions. Gd2O3:Tb3+, K+ nanoparticles were calcinated at 600°C, 700°C, 800°C, and 900°C and subjected to the analysis of x-ray diffractometer, transmission electron microscope, Fourier transform infrared spectrometer, fluorescence spectroscopy, and magnetization. The experimental results showed that as the calcination temperature increased from 600°C to 800°C, the morphology and particle size of the Gd2O3:Tb3+, K+ nanoparticles did not change significantly; whereas when the calcination temperature rose from 800°C to 900°C, the structure of Gd2O3 particles changed from cubic to monoclinic. As the temperature increased (below 800°C), the crystallinity of the cubic particles increased and the surface defects of the particles decreased, resulting in an increase in fluorescence intensity. For the monoclinic particles, the fluorescence intensity was significantly decreased and the magnetization was increased. The measured magnetic results confirmed the good paramagnetism of the synthesized nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.