Abstract

Heterojunction photocatalytic materials show excellent performance in degrading toxic pollutants. This study investigates the influence of calcination temperature on the performances of floral Bi2O3/TiO2 composite photocatalyst crystal, which was prepared with glycerol, bismuth nitrate, and titanium tetrachloride as the major raw materials via the solvothermal method. XRD, SEM/TEM, BET, Uv-vis, and XPS were employed to analyze the crystal structure, morphology, specific surface area, band gap, and surface chemical structure of the calcined temperature catalysts. The calcination temperature influence on the catalytic performance of composite photocatalysis was tested with rhodamine B (RhB) as the degradation object. The results revealed the high catalytic activity and higher photocatalytic performance of the Bi2O3/TiO2 catalyst. The degradation efficiency of the Bi2O3/TiO2 catalyst to RhB was 97%, 100%, and 91% at 400 °C, 450 °C, and 500 °C calcination temperatures, respectively, in which the peak degradation activity appeared at 450 °C. The characterization results show that the appropriate calcination temperature promoted the crystallization of the Bi2O3/TiO2 catalyst, increased its specific surface area and the active sites of catalytic reaction, and improved the separation efficiency of electrons and holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.