Abstract
Caffeine is one of the world's most commonly ingested alkaloids which easily permeates the placenta. The teratogenic and embryotoxic influence of large doses of caffeine has been established in many experimental studies on animals. The objective of this work was to assess the influence of caffeine, administered at 45 °C, on the development of the bone tissue of rats, with particular reference to elemental bone composition using an X-ray microprobe. The research was conducted on white rats of the Wistar strain. The fertilized females were divided into two groups: an Experimental Group (Group E) and a Control Group (Group C). The females in Group E were given caffeine orally (at 45 °C) in 30 mg/day doses from the 8th to the 21st day of pregnancy. The females in Group C were given water at the same temperature. The fetuses were used to assess the growth and mineralization of the skeleton. A qualitative analysis of the morphology and mineralization of bones was conducted using the alcian-alizarin method. For calcium and potassium analysis, an X-ray microprobe was used. By staining the skeleton using the alcian-alizarin method, changes in 52 of Group E fetuses were observed. The frequency of the development variants in the Group E rats was statistically higher, compared with Group C. Receiving caffeine at a higher temperature may result in different pharmacodynamics and significantly change tolerance to it. In Group E, a significant decrease in the calcium level, as well as an increase in the potassium level, was observed. The X-ray microprobe can be a perfect complement to the methods which enable determination of the mineralization of osseous tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.