Abstract

In this paper, inductively coupled plasma etching of Hg1−xCdxTe in CH4–H2-based chemistry is studied. This work is focused on the effects of substrate temperature, ion energy, and alloy composition on etch rate and surface composition. A strong influence of substrate temperature is shown. The etch rate is multiplied by more than a factor of 3 when the temperature is increased from 5°C to 35°C. A purely physical Cd removal mechanism is ruled out using x-ray photoelectron spectroscopy data from samples etched at different temperatures. Under the conditions of very low ion energy, an etching mechanism limited by the supply of active species from the plasma predicts an Hg1−xCdxTe etch rate evolution that fits very well with our data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.