Abstract
To gain insight into the effects of amidation on the mechanism of membrane interaction, we studied two peptides modelin-5-COOH and modelin-5-CONH(2) and found they exhibit high surface activities (23.2 and 27.1 mN/m, respectively). When they were tested against Escherichia coli, amidation was seen to increase efficacy approximately 10-fold. Our results demonstrated that both peptides adopted low levels of α-helix in solution (<20%); however, in the presence of E. coli lipid extract, modelin-5-CONH(2) had a greater propensity (69%) than modelin-5-COOH (32%) to generate α-helical structure. The binding coefficient for both peptides was ∼10 μM, and the Hill coefficient approximated 1, suggesting that for both peptides the interactions with E. coli membranes were monomeric and comparable in strength. The peptides showed a clear preference for anionic lipid, with monolayer data showing that enhanced levels of helicity were associated with a greater pressure change (∼6 mN/m). Use of fluorescein-phosphatidylethanolamine showed the amidated version was able to generate greater levels of membrane disruption, which was confirmed by thermodynamic analysis. The data would imply that both peptides are able to initially bind to bilayer structures, but upon binding, the amidation stabilizes helix formation. This would be expected to help overcome a key rate-limiting step and generate higher local concentrations of peptide at the bilayer interface, which in turn would be predicted to increase efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.