Abstract
The effects of bypass ratio on co-flowing subsonic and correctly expanded sonic jet decay have been studied experimentally. Co-flowing jets with lip thickness 1.0 Dp (where Dp is the diameter of primary nozzle and is equal to 10 mm) with bypass ratios of around 0.7, 1.4, and 6.4 at primary jet exit Mach numbers 0.6, 0.8, and 1.0 have been analyzed. A single free jet equivalent to primary nozzle of the co-flowing nozzle was considered for comparison. Primary jet centerline total pressure decay, spread, and static pressure variation were investigated. The results show that the mixing of the high bypass ratio co-flowing jet with lip thickness 1.0 Dp is superior to low bypass ratio co-flowing jet. Both lip thickness and bypass ratio have a strong influence on the co-flowing jet mixing. Bypass ratio 6.3 experiences a significantly higher mixing than bypass ratio 0.7 and 1.4. Selected jets were also investigated computationally. The computations capture the salient flow physics and reproduce well with the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.