Abstract

Based on the bench-scale opposed multi-burner (OMB) coal-water slurry (CWS) entrained-flow gasification platform, the influence of burner geometry on atomization characteristics of the CWS in gasifier is investigated. The visualization imaging system is used to obtain image sequences that record the dynamic process of the CWS atomization. The effective image processing algorithms and particle tracking algorithms are applied to analyze and discuss the atomization, particle motion and particle fluctuation characteristics. The primary atomization mode of the CWS jets with different burner structures is the superpulsating atomization. With the increase of A1/A2, the Sauter mean diameter (SMD) of the CWS droplets in the statistical region first increases and then decreases. Along the radial distance, the SMD of the CWS droplets generally increases first and then decreases. As the burner outlet area ratio increases, the particle size fluctuates more intensely, and the particle velocity turbulence first decreases and then increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.