Abstract
In order to achieve an accurate design of polarization-insensitive semiconductor optical amplifiers based on tensile strained bulk InGaAsP, the reduction of strain in the active layer of the buried heterostructure and its influence on polarization sensitivity are analyzed numerically for the first time. The gain calculation, including the strain distribution in the active layer, is examined based on the k /spl middot/ p method for the different active layers. It is found that the strain introduced during the epitaxial growth is strongly reduced after regrowth of the burying layer. In an active layer having the aspect ratio of 1 : 4, the strain reduction causes more than a 0.5-dB deviation in the polarization sensitivity of the gain. From a comparison with the experimental results, it is shown that including the effect of the burying layer in the calculation gives an accurate determination of the amount of strain for the polarization independence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.