Abstract

The planar aromatic tridentate ligand 2,6-bis(1-S-neopentylbenzimidazol-2-yl)pyridine (L(11)) reacts with Ln(III) (Ln = La-Lu) in acetonitrile to give the successive complexes [Ln(L(11))(n)](3+) (n = 1-3). However, stability constants determined by spectrophotometry and NMR titrations show that formation of the tris complexes is not favored, log K(3) being around 1 for La(III) and Eu(III), while no such species could be evidenced for the smaller Lu(III) ion. The X-ray structures of L(11) (monoclinic, P2(1), a = 13.4850(12) A, b = 12.0243(11) A, c = 16.4239(14) A, beta = 103.747(7) degrees ), [La(ClO(4))(2)(L(11))(2)](3)[La(ClO(4))(2)(H(2)O)(L(11))(2)](ClO(4))(4).15MeCN (1a, monoclinic, P2(1), a = 21.765(4) A, b = 30.769(6) A, c = 21.541(5) A, beta = 116.01(3) degrees ), and [Eu(L(11))(3)](ClO(4))(3).4.28MeCN (5a, monoclinic, P1, a = 14.166(3) A, b = 19.212(4) A, c = 21.099(4) A, alpha = 108.91(3) degrees, beta = 98.22(3) degrees, gamma = 108.40(3) degrees ) have been solved. In 1a, two different types of complex cations are evidenced, both containing 10-coordinate La(III) ions. In the first type, both perchlorate anions are bidentate, while in the second type, one perchlorate is monodentate, the 10th coordination position being occupied by a water molecule. In 5a the three ligands are not equivalent. Ligands A and B are wrapped in a helical way and are mirror images of each other, while ligand C lies almost perpendicular to the two other ones. This stems from the steric hindrance generated by the bulky neopentyl groups with the consecutive loss of any stabilizing interstrand pi-stacking interactions. This explains the low stability of the tris complexes and the difficulty of isolating them and points to the importance of the steric factors in the design of self-assembled triple helical lanthanide-containing functional edifices [Ln(L(i))(3)](3+).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call