Abstract
A direct drive servovalve has some inherent benefits over its conventional counterparts, but also has better reliability and output power. However, due to the rigid connection between the spool and the motor, which takes the place of interstage drive-by fluid, the spool oscillation is a long-standing unsolved problem. In order to study the oscillation mechanism and the influencing factors, a double-circuit direct drive servovalve was numerically simulated. An oil return valve cavity was concentrated on as the main flow domain and was used to analyze the fluid flow characteristics. Local cavitation fraction and surface average cavitation fraction were defined to evaluate the cavitation situation. The periodic growth process of bubbles in the valve cavity was obtained. The numerical results show that bubbles in the oil return valve cavity changes, although the occurrence, evolution, and collapse stages were certain. The intensity of pressure pulsation caused by bubble variation is highly related to the bubbles causing the cavitation, which suggests a workable way to inhibit the spool oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.