Abstract

The influence of the spatial distributions of bubbles on the propagation of linear acoustic waves in polydisperse bubbly liquids is studied. Using the diagrammatic approach, the effective wavenumber, which includes both spatial information and higher orders of multiple scattering, is presented. The phase speed and attenuation coefficient of acoustic waves in bubbly liquids are calculated from the effective wavenumber. A three-dimensional random model, the Generalized Matérn's hard-core point process, is used to close the model. Numerical simulations reveal that as the bubble volume fraction becomes larger so does the effect of the bubble distributions on the attenuation and phase speed. The irregular discrepancy between previously reported experimental results and the classical theory is attributed to the influence of bubble clustering on the propagation of linear waves. The comparison between the present model and the experimental measurements [Leroy, Strybulevych, Page, and Scanlon. (2011). Phys. Rev. E 83, 046605] reveals that the proposed correction term significantly improves the theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call