Abstract

Concrete and steel specimens were collected from control (unexposed) and fire-exposed sections of highway bridges in the state of Indiana, U.S., to evaluate the degree of degradation of selected properties of concrete and steel components. The changes in the properties of concrete were evaluated using differential scanning calorimetry (DSC) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) techniques. The focus of concrete evaluation was on detection and quantification of calcium hydroxide (CH), identification of changes in the quality and quantity of other hydrates, assessment of the extent of cracking in the matrix, and the occurrence of debonding of aggregates. Concrete collected from the sections of bridges exposed to fire was found to contain lower amounts of CH compared with the concrete from the control (i.e., not exposed) sections. The observed degree of cracking and aggregate debonding was also higher in specimens exposed to fire. Steel specimens were evaluated with respect to changes in the microstructure (the size and the pattern of the grains) and hardness. No significant changes resulting from fire exposure were detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.