Abstract

The diffuse noninvasive epitheliochorial equine placenta develops an intimate and complex interdigitation with the maternal endometrium throughout gestation to maximise surface contact and, consequently, optimise nutritional and gaseous maternofetal exchanges. A significant reduction occurs in the surface density of microcotyledons on the placentae of Welsh Pony vs. Thoroughbred mares that may relate to a difference in either the number or density of endometrial glands between these breeds. To examine this hypothesis and to determine the influence of the oestrous cycle upon the development and surface density of endometrial glands. Endometrial biopsies were taken under videoendoscopic visual control from the base of a uterine horn from young, fertile, Welsh Pony and Thoroughbred mares at defined stages of the oestrous cycle. Computer-assisted morphometric analysis then permitted the surface density of endometrial glands within the stratum spongiosum to be assessed. There was a statistically significant reduction in endometrial gland surface density in the Welsh Pony vs. Thoroughbred mares during both oestrus and dioestrus. A substantial upregulation of epidermal growth factor (EGF) mRNA in the epithelial cells lining the apical portions of endometrial glands has been demonstrated in pregnant mares between Days 35 and 40 after ovulation, coincident with the onset of interdigitation between the allantochorion and endometrium to form the microcotyledonary placenta. The increased surface density of endometrial glands noted in the uteri of Thoroughbred mares might account for the greater surface density of placental microcotyledons in this breed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.