Abstract

Experimentally, self-assembled morphologies of the (AB)f starlike block copolymer are strongly dependent on the number of arms, f. For example, the 2- and 4-arm starlike block copolymers exhibited the morphologies of hexagonally arrayed polystyrene cylinder in the polyisoprene matrix while order-bicontinuous nanostructures were observed in 8-, 12-, and 18-arm stars. Theoretically, we found that the transition sequence for (AB)3 is C1B → DkB → P2B → L2B, which becomes C1B → L1B when f > 6. To explore the influence of f on the phase behavior of (AB)f under cylindrical confinement, we calculated the two-dimensional phase diagram with respect to the volume fraction and the pore diameter. Our conclusions show that the topologies of the phase diagram are independent of the number of arms; however, the number of arms does affect the phase boundary, which inevitably leads to the different phase transition sequences at fixed volume fraction. Therefore, from the calculated phase diagram, the influence of f on the phase behavior of the starlike copolymer is fully understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.