Abstract

Objective: The influence of branched-chain amino acid (BCAA) supplementation on urinary urea nitrogen, hydroxyproline (HP), and 3-methylhistidine (3MH) concentrations after 25 min of breast stroke exercise (65–70% maximum heart rate reserved, 65–70% HRRmax) followed by a 600 m crawl stroke competition was investigated in a double-blind, counter-balanced study.Methods: Male university students (19–22 years old) majoring in physical education participated in the study. Based on the previous swimming time of a 600 m crawl stroke, the participants were divided into two groups: placebo (n = 9, BMI = 24.2 ± 2.1 kg/m2; 12 g of glucose/day; in capsules) and BCAA (n = 10, BMI = 22.7 ± 1.5 kg/m2; 12 g of BCAAs/day; in capsules: leucine 54%, isoleucine 19%, valine 27%) groups. The participants maintained a regular dietary intake (except the prescribed breakfast on day 15) and exercise activity at a moderate/low intensity (60–70% HRRmax, swimming and rowing, ∼1.5 hour/day) during the 15-day study. A prescribed exercise program was performed on day 15. Urinary and blood samples were collected before, during, and after the prescribed exercise for the measurements of the urinary urea nitrogen, HP, and 3MH concentrations in urine, as well as the glucose, lactate, glutamine, alanine, and BCAA concentrations in plasma.Results: Two weeks of dietary supplementation did not induce any changes in the plasma glucose and total BCAA concentrations of either group, nor in the urinary urea nitrogen, HP, and 3MH concentrations in urine. On day 15, after 25 min of breast stroke exercise and a 600 m crawl stroke competition, plasma glucose concentration decreased significantly (p < 0.05) whereas plasma lactate concentration increased significantly (p < 0.05) in both groups. The exercise program prescribed in the study did not affect urinary urea nitrogen, HP, and 3MH concentrations. Twenty hours after the competition, however, a significant increase in the concentrations of urinary urea nitrogen, HP, and 3MH was found in the placebo group (p < 0.05), but not in the BCAA group.Conclusions: The results obtained in this study suggest that swimming induced muscle proteolysis was prevented by BCAA supplementation. The mechanism could be attributed to the availability of ammonia provided by the oxidation of supplemented BCAAs during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.