Abstract
This paper is the logical follow-up to a work [1] whose results were presented at the 28th French Thermal Congress which was to be held in Belfort in 2020. The model developed at that time is completed in this proposal to consider the specificity of the geothermal heat pump. This is a machine operating upon a mechanical vapor compression cycle, the limit of which is an inverse Carnot cycle. Its specificity consists of a cold loop at the source with the geothermal exchanger and the evaporator, then a hot loop at the sink with the condenser and a floor heat exchanger in the application considered here. We are particularly concerned with the optimal sizing of these heat exchangers through their effectiveness. The parametric sensitivity of this distribution to various boundary conditions is studied, especially by focusing on different conditions at the source: (1) imposed soil temperature, corresponding to a Dirichlet condition, (2) imposed heat flux (including adiabatic case), corresponding to a Neumann condition, (3) imposed mechanical power consumed by the heat pump, and (4) imposed coefficient of performance COP, to all cases being associated a finite thermal capacity in thermal contact with the geothermal exchanger operating in steady-state conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.