Abstract
The flow, bearing, and carrying capacity of the cycloidal hydrostatic oil cavity in hydrostatic turntable systems are numerically simulated, considering the rotation speeds of a turntable from 0 to 5 m/s and different boundary conditions. The vortex effect is weakened, and the stability of the oil cavity is enhanced with the increase in lubricant viscosity. However, the increase in inlet speed, depth, and inlet radius of the oil cavity causes the vortex effect to increase and the stability of oil cavity to reduce. With the increase in the oil film thickness, the carrying capacity of the oil cavity diminishes. The oil cavity pressure increases along the direction of the motion of the turntable; it is distributed unevenly because of the rotation of the turntable. With the increase in turntable speed, the location and size of the vortex scope in the oil cavity flow field and the strength of the vortex near the entrance gradually weaken and move away from the entry. The distribution of pressure is determined by the locations of the vortex. When the vortex is close to the wall, the wall pressure increases at its location. Otherwise, the wall pressure decreases first and then increases after the center of the vortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.