Abstract

Dyslexic children show impaired in postural stability. The aim of our study was to test the influence of foot soles and visual information on the postural control of dyslexic children, compared to non-dyslexic children. Postural stability was evaluated with TechnoConcept® platform in twenty-four dyslexic children (mean age: 9.3±0.29years) and in twenty-four non-dyslexic children, gender- and age-matched, in two postural conditions (with and without foam: a 4-mm foam was put under their feet or not) and in two visual conditions (eyes open and eyes closed). We measured the surface area, the length and the mean velocity of the center of pressure (CoP). Moreover, we calculated the Romberg Quotient (RQ). Our results showed that the surface area, length and mean velocity of the CoP were significantly greater in the dyslexic children compared to the non-dyslexic children, particularly with foam and eyes closed. Furthermore, the RQ was significantly smaller in the dyslexic children and significantly greater without foam than with foam. All these findings suggest that dyslexic children are not able to compensate with other available inputs when sensorial inputs are less informative (with foam, or eyes closed), which results in poor postural stability. We suggest that the impairment of the cerebellar integration of all the sensorial inputs is responsible for the postural deficits observed in dyslexic children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call