Abstract

We have studied structural and magnetic properties of Ta|CoFeB|MgO heterostructures using cross-section transmission electron microscopy (TEM), electron energy loss spectrum (EELS) imaging, and vibrating sample magnetometry. From the TEM studies, the CoFeB layer is found to be predominantly amorphous for as deposited films, whereas small crystallites, diameter of ∼5 nm, are observed in films annealed at 300 °C. We find that the presence of such nanocrystallites is not sufficient for the occurrence of perpendicular magnetic anisotropy. Using EELS, we find that boron diffuses into the Ta underlayer upon annealing. The Ta underlayer thickness dependence of the magnetic anisotropy indicates that ∼0.2 nm of Ta underlayer is enough to absorb the boron from the CoFeB layer and induce perpendicular magnetic anisotropy. Boron diffusion upon annealing becomes limited when the CoFeB layer thickness is larger than ∼2 nm, which coincides with the thickness at which the saturation magnetization MS and the interface magnetic anisotropy KI drop by ∼20%. These results show the direct role which boron plays in determining the perpendicular magnetic anisotropy in CoFeB|MgO heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.