Abstract

The influence of addition of lead borate Pb(BO2)2 and boron oxide B2O3 on the phase evolution and superconducting properties of (Bi, Pb)-2223 HTSs synthesized by the solid-state reaction method in alumina crucibles has been studied. X-ray diffraction, resistivity, critical current density, and AC susceptibility measurements were performed on the prepared compounds. Obtained results have shown that boron-containing dopants lead to the drastic enhancement of the (Bi, Pb)-2223 phase formation. Boron-doped samples reveal a significant increase in both the zero resistivity temperature and transport critical current density compared to the undoped specimen. On the other hand, a high content of boron-containing dopants causes the appearance of a very low-T c 2201 phase and leads to a deterioration of coupling between superconducting grain boundaries. Obtained results could enable us to develop a cheap and energy efficient fabrication technology for nearly single (Bi, Pb)-2223 phase superconducting materials via heat treatment of boron-incorporated precursors in an alumina crucibles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.