Abstract

Borehole shrinkage and collapse are likely to occur when downhole testing is conducted in soft or loose sandy soils, resulting in testing interruption. To prevent this situation from occurring, installing casing in the borehole is a common approach. However, in actual testing, the quality of the signal obtained from measuring points within the depth of the casing is often not ideal, and there is still no clear and unified justification for the causes of interference generated by the casing. Therefore, the team attempt to investigate and elucidate the impact of casing through on-site experiments and numerical simulations. Firstly, on-site tests on the impact of different materials of casing on the wave velocity test utilizing the downhole method are conducted, the waveform characteristics of the measurement points inside the PVC casing and steel casing boreholes are analyzed, and the usability of the test results are evaluated. Next, the contact state between shallow soil and casing is changed, and its impact on the waveform characteristics of signal at different depth measurement points is analyzed. Then, the ABAQUS finite element software is utilized to establish a three-dimensional finite element model for wave velocity testing using the casing method, and the dynamic response of the measuring points on the casing wall inside the hole under surface excitation is solved. By numerically simulating different casing materials, the contact state between the casing and the hole wall, and the presence of low wave velocity filling soil around the casing, the variation patterns of the affected measurement point signals in the time and frequency domains are investigated. Furthermore, combined with the measured data, the impact characteristics of the casing on the results of the wave velocity testing using the downhole method are systematically explored. This research can provide some insights for the application and data interpretation of signals in the downhole methods of cased wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call