Abstract

The influence of the Bohr-Haldane effect (BH) on steady-state gas exchange has previously been described by its effect of gas transfer from the blood when arterial and venous blood gas tensions were held constant. This report quantifies by computer analysis the effects of BH when either or both arterial and venous blood gas tensions are subject to change. When mixed venous blood gas composition is held constant, elimination of BH from a single lung unit typically reduces CO2 output by 6.5% and O2 uptake by 0.5%. Similar effects occur in a two-compartment lung model whether alveolar ventilation-perfusion (VA/Q) mismatch occurs in a parallel or series ventilatory arrangement. When arterial blood gas composition is held constant, elimination of BH increases systemic venous CO2 partial pressure, but O2 partial pressure is hardly affected in the absence of metabolic acidosis. When both mixed venous and arterial blood gas tensions vary and gas exchange is stressed by VA/Q inequality, altitude, anemia, or exercise, elimination of BH predominantly affects mixed venous rather than arterial blood gas tensions. it is concluded that BH may act primarily to reduce tissue acidosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.