Abstract
Atherosclerosis is a localized complication dependent on both the rheology and the arterial response to blood pressure. Fluid–structure interaction (FSI) study can be effectively used to understand the local haemodynamics and study the development and progression of atherosclerosis. Although numerical investigations of atherosclerosis are well documented, research on the influence of blood pressure as a result of the response to physio–social factors like anxiety, mental stress, and exercise is scarce. In this work, a three-dimensional (3D) Fluid–Structure Interaction (FSI) study was carried out for normal and stenosed patient-specific carotid artery models. Haemodynamic parameters such as Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) are evaluated for normal and hypertension conditions. The Carreau–Yasuda blood viscosity model was used in the FSI simulations, and the results are compared with the Newtonian model. The results reveal that high blood pressure increases the peripheral resistance, thereby reducing the WSS. Higher OSI occurs in the region with high flow recirculation. Variation of WSS due to changes in blood pressure and blood viscosity is important in understanding the haemodynamics of carotid arteries. This study demonstrates the potential of FSI to understand the causes of atherosclerosis due to altered blood pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.