Abstract

Microplastics (MPs) are ubiquitous in aquatic environments, which are important carriers of emerging contaminants (ECs). Biofilms can be attached to the surface of MPs in a natural aquatic environment, which may influence chemical adsorption; however, knowledge of its impact is still limited. This study investigated the effect of biofilms on MPs on the adsorption of ECs through field-laboratory exposure experiments. Three types of MPs were naturally colonized with biofilms in lake. Then, biofilm-absent/biofilm-attached MPs were exposed to nine EC solutions at a concentration of 8 μg/L of each compound in laboratory. Most compounds exhibited 3.8 times lower concentrations on biofilm-attached MPs than on biofilm-absent MPs; only a few compounds showed enhanced adsorption. Pseudo-equilibrium was achieved within 72 h based on adsorption kinetics, implying fast adsorption of ECs on biofilm-attached MPs. The partition coefficients (Kd) for biofilm-attached MPs were 0.14 (diclofenac) to 535 (miconazole) L/kg and were positively correlated with octanol/water partition coefficients (Kow). This indicated that chemical properties (such as Kow) of the compounds determined their final adsorption amounts on MPs, although these were influenced by the presence of the biofilm. Hence, multiple influencing factors should be considered when evaluating the carrier potential of MPs for ECs in aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.