Abstract

The long-term leachability of heavy metals from municipal solid waste incinerator (MSWI) bottom ash is of concern because of its potential use as a secondary construction material. Calcite is the most important long-term buffer in MSWI bottom ash as it buffers solutions during percolation and is an important factor in the control of heavy-metal mobility. It has been argued that biodegradation of residual organic material in the MSWI is a significant source of acidity. Model calculations have therefore been carried out to determine the influence of biodegradation on the longevity of the calcite buffer. Using the program STEADYQL, which couples thermodynamic equilibrium with kinetically controlled reactions, solution composition was estimated at steady state. The concentration of Ca dissolved from calcite was estimated in the presence and absence of gypsum as a function of the reaction rate of a number of slow reactions: aerobic, ferrogenic, sulfogenic, and methanogenic biodegradation; diffusion of O2 into the system; degassing of CO2 out of the system; and dissolution of Ca silicate. It was found that, independent of the rate, the biodegradation of organic matter had little influence on the longevity of the calcite buffer (between 2,000 and 3,000 yr for a deposit of 1 m in depth), that anaerobic biodegradation may have a slight retarding effect, and that calcite dissolution due to acid input via precipitation was negligible (around 3% of the total at reference conditions for rainwater with a pH value of 4.3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.