Abstract
The microstructure and mechanical properties of as-extruded Mg–8Y–1Er–2Zn (wt%) alloy containing long period stacking ordered (LPSO) phase are comparatively investigated before and after corrosion in a simulated body fluid (SBF) at 37°C. The as-extruded alloy consists of a long strip-like 18R-LPSO phase and some fine lamellae grains formed by primary recrystallization during the extrusion process. The hydrogen evolution volume per day fluctuates between 0.21 and 0.32ml/cm2 in the immersion test for 240h, and the corresponding corrosion rate is calculated as 0.568mm/y. The corrosion product is determined as Mg(OH)2, whilst a Ca(H2PO4)2 compound is also observed on the surface of the samples. The corrosion site preferentially occurs at the interface between LPSO phase and Mg matrix. Before immersing, the tensile yield strength (TYS), ultimate tensile strength (UTS) and elongation of the alloy are 275MPa, 359MPa, and 19%, respectively. More attractively, these mechanical properties can be maintained even after immersing in SBF for 240h (TYS, UTS and elongation are 216MPa, 286MPa and 6.8%, respectively) because of the existence of high anti-corrosion LPSO phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.