Abstract

Sandy areas occupy a huge amount of land worldwide, but due to their characteristics, they are mostly low in fertility and low in organic matter. Sandy soils have coarse texture, high saturated hydraulic conductivity, low soil organic carbon, and poor aggregate stability and water retention capacity; therefore, it is necessary to add organic additives to them. The objective of this study was to assess the effect of particle size and application rate of biochar (BC) produced under different pyrolysis temperatures on the porosity P, available water content for plants AWC, saturated hydraulic conductivity Ks, and contact angle CA of sandy soil. The results show that an application of BC to sandy soil significantly increased AWC by 76–168%, CA by 252–489%, P by 6–11%, and significantly reduced Ks by 37–90%. Statistical analysis of the effect of three examined factors (BC application rate, particle size, and pyrolysis temperature) revealed that P, AWC, and Ks were affected by all three factors, while CA was affected only by BC application rate and particle size. The statistically significant interaction between the two factors was found for P (temperature × rate and size × rate), AWC (temperature × size), and Ks (size × rate). Statistically significant interaction among the three factors was not found for any hydrophysical parameter. The application of BC to amend sandy soils can be seen as a strategy to mitigate drought conditions and to reduce the amount of irrigation, saving water. Further investigations are needed with regard to the BC application under climate conditions with long hot and dry periods, which may promote soil water repellency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call