Abstract

ObjectiveThis study investigated if the incorporation of the bioadhesive polymers Carbopol 980, Carboxymethyl cellulose (CMC), and Aristoflex AVC in a fluoridated solution (NaF–900ppm) would increase the solution’s protective effect against enamel erosion. MethodsEnamel specimens were submitted to a 5-day de-remineralization cycling model, consisting of 2min immersions in 0.3% citric acid (6x/day), 1min treatments with the polymers (associated or not with fluoride), and 60min storage in artificial saliva. Ultrapure water was used as the negative control and a 900ppm fluoride solution as positive control. The initial Knoop microhardness (KHN1) was used to randomize the samples into groups. Another two microhardness assessments were performed after the first (KHN2) and second (KHN3) acid immersions, to determine initial erosion in the first day. The formula: %KHNalt=[(KHN3-KHN2)/KHN2]*100 was used to define the protective effect of the treatments. After the 5-day cycling, surface loss (SL, in μm) was evaluated with profilometry. Data were analyzed with 2-way ANOVA and Tukey’s tests (p<0.05). ResultsFor %KHNalt, the polymers alone did not reduce enamel demineralization when compared to the negative control, but Carbopol associated with NaF significantly improved its protective effect. The profilometric analysis showed that Carbopol, associated or not with NaF, exhibited the lowest SL, while CMC and Aristoflex did not exhibit a protective effect, nor were they able to improve the protection of NaF. ConclusionsIt is concluded that Carbopol enhanced NaF’s protection against initial erosion. Carbopol alone or associated with NaF was able to reduce SL after several erosive challenges. Clinical significanceCarbopol by itself was able to reduce the erosive wear magnitude to the same extent as the sodium fluoride, therefore, is a promising agent to prevent or control enamel erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.