Abstract
The impact of binder selection on catalytic performance of real catalyst extrudates is still limitedly shown in biomass catalysis. Herein, we have prepared two zeolite-based bifunctional extrudates (Ni/LaY-Al2O3 and Ni/LaY-SiO2). Compared with Ni/LaY-Al2O3, Ni/LaY-SiO2 shows a markedly enhanced durability and sustained performance for 936 h in the continuous liquid-phase hydrogenation of γ-valerolactone into methyl pentanoate. Complementary characterization studies reveal that choosing SiO2 as binder could efficiently mitigate metal agglomeration, coke formation and support dealumination during catalysis. These findings showcase that binder selection is essential for catalyst durability in the development of the industrial-level bifunctional catalysts for biomass valorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.