Abstract

In the last decade, considerable research effort was directed to the deposition of multilayer films with layer thicknesses in the nanometer range (superlattice coatings), in order to increase the performance of various cutting tools and machine parts. The goal of the present work was to investigate the main microstructural, mechanical and wear resistance characteristics of a superlattice coating, consisting of alternate multilayer ZrN/TiAIN films, with various bilayer periods (5 / 20 nm). The coatings were deposited by the cathodic arc method on Si, plain carbon steel and high speed steel substrates to be used as wear resistance surfaces. The multilayer structures were prepared by using shutters placed in front of each cathode (Zr and Ti+Al). The characteristics of multilayer structures (elemental and phase composition, texture, Vickers microhardness, thickness, adhesion, and wear resistance) were determined by using various techniques (AES, XPS, XRD, microhardness measurements, scratch, and tribological tests). A comparison with the properties of ZrN and TiAIN single-layer coatings was carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.