Abstract

Forced oscillations is a technique to determine respiratory input impedance from small amplitude sinusoidal pressure excursions introduced at the airway opening. Models used to predict respiratory input impedance typically ignore the direct effect of bifurcations on the flow, and treat airway branches as individual straight tubes placed appropriately in parallel and series. The flow within the individual tubes is assumed equivalent to that which would occur in infinitely long tubes. In this study we examined the influence of bifurcations on impedance for conditions of the forced oscillatory technique. We measured input impedance using forced oscillations in straight tubes and in an anatomically-relevant, four generation physical model of a human airway network. The input impedance measured experimentally compared well to that obtained theoretically using model predictions. The predictive scheme was based on appropriate parallel and series combinations of theoretically computed individual tube impedances, which were computed from solutions to oscillatory flow of a compressible gas in an infinitely long rigid tube. The agreement between experimental measurements and predictions indicates that bifurcations play a relatively minor direct role on the flow impedance for conditions of the forced oscillations technique. These results are explained in terms of the small tidal volumes used, whereby the axial distance traveled by a fluid particle during an oscillation cycle is appreciably smaller than branch segment lengths. Accordingly, only a small fraction of fluid particles travel through the bifurcation region, and the remainder experience an environment approaching flow in an infinite straight tube. The relevance of the study to the prediction of impedances in the human lung during forced oscillations is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.