Abstract

The development of reinforcements for soil has made an impact in most of the civil engineering sectors especially transportation. The use of geogrids is frequent in roadways but they are also finding use in railways. The major impact that geogrids could have is providing desired stiffness to a section by reducing material and serving as a proper reinforcement material. In the current study, an attempt has been made to redesign the railway embankment economically with the help of geogrids. Biaxial geogrid is used to substitute the blanket layer (thickness up to 100 cm) in the railway embankment by fulfilling the strain modulus requirement of the embankment, calculated using a plate bearing test as per DIN 18134. The experiment is performed on the embankment replicated in a metallic test chamber with granular soil as subgrade and geogrid is placed beneath the ballast. The experimental study is validated by a 3-D numerical model using Midas GTS NX software. The experimental analysis shows an improvement of 31.47% in the second modulus of the earth embankment. For the implementation of this study, a design section of Indian railways is adopted. With the help of geogrid, a reduction of 50% is observed in the embankment height, thereby reducing the overall costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.