Abstract

Degree of super-cooling is denoted by the temperature difference between the melting temperature of the polymer T m, and peak crystallization temperature T p. Upon addition of progressively increasing amounts of benzoic acid (BA) to isotactic polypropylene {(is)-PP}, the degree of super-cooling was found to decrease, which leads to considerable reduction in moulding cycle time and savings in production cost. Haze % was found to progressively decrease with the corresponding increase in the amount of benzoic acid in (is)-PP, resulting in much improved transparency of the (is)-PP-benzoic acid blends. Irradiation to an absorbed dose of 25 kGy affected the transparency of blends slightly. Thermogravimetric analysis of (is)-PP-BA blends showed that there is no adverse effect on thermal stability of the polypropylene. Also, the irradiation of (is)-PP-BA blends did not bring about any significant changes in their thermal stability. (is)-PP-BA blends demonstrated, in general, improved tensile strength when compared to pure (is)-PP. Moreover, no significant detrimental influence of irradiation was observed on the tensile strength of (is)-PP-BA blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.