Abstract

Based on the Jourdain variation principle, a mathematical model of the process of free widening in hot rolling of thin sheet metal is developed. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. As a functional of the variational equation, sum of the powers of internal resistances, frictional forces, shear forces, front and back tension was used. When solving the Jourdain variational equation for the case of rolling with tension, the Ritz method was applied. The Jourdain variational equation was transformed into a system of homogeneous equations, the left side of each represented a derivative with respect to a varying parameter. Varying parameters were the exponent of the kinematic condition, general widening in the plastic deformation zone and the widening in its neutral section. The developed model allows to study the distribution of the widening on length of the deformation zone depending on the parameters of rolling process and sheet metal. To test the adequacy of the developed free-widening model, experimental studies were carried out on a two-roll cold rolling mill. Lead samples were rolled, the measured widening values of which coincided with the theoretical calculated with an accuracy of less than 10%. Cold rolling of lead samples simulates hot rolling. Theoretical analysis of the influence of tension on the process of free widening when applying tension is consistent with the practical results presented in the literature. It is shown that the unevenness of tensile stresses in the input and output sections of the deformation zone arising from the application of tension causes the appearance of additional powers in the power balance equation, leading to a decrease in magnitude of the widening. The resulting unevenness of the tensile stresses can be used to control magnitude of the widening in thin-sheet rolling. In turn, unevenness of the tensile stresses along the width of rolled strip can be increased or decreased by means of the bending forces of work rolls of the rolling stand. The article presents a scheme for controlling the value of the rolling band widening during hot rolling with the help of bending forces of work rolls.

Highlights

  • The Jourdain variational equation was transformed into a system of homogeneous equations, the left side of each represented a derivative with respect to a varying parameter

  • The developed model allows to study the distribution of the widening on length of the deformation zone depending on the parameters of rolling process and sheet metal

  • It is shown that the unevenness of tensile stresses in the input and output sections of the deformation zone arising from the application of tension causes the appearance of additional powers in the power balance equation, leading to a decrease in magnitude of the widening

Read more

Summary

Металлургические технологии

В процессе горячей прокатки валки изнашиваются, причем величина износа (выработки) рабочих валков по длине бочки неодинакова: в местах, соответствую­ щих кромкам прокатываемых полос, износ больше по сравнению с величиной износа средней части. К наиболее эффективным методам формирования профиля поперечного сечения прокатываемых на непрерывных широкополосных станах горячей прокатки полос относится проката полос в четырехвалковых клетях с осевой сдвижкой рабочих валков. При этом величина выпуклости прокатываемых полос является линейной функцией от величины осевой сдвижки рабочих валков. В процессе горячей прокатки рабочие валки в контакте с полосой вырабатываются (изнашиваются), эффективная выпук­ лость межвалкового зазора уменьшается, и с помощью осевой сдвижки рабочих валков это уменьшение компенсируется. Поскольку в процессе горячей прокатки рабочие валки изнашиваются (вырабатываются) неравномерно, то при отсутствии устройств осевой сдвижки рабочих валков необходимо избегать случаев, когда после прокатки узкого металла будут прокатываться более широкие полосы. Технология горячей прокатки полос в клетях с осевой сдвижкой рабочих валков позволяет внедрить элементы беспрограммной прокатки

Теоретический анализ процесса уширения
Экспериментальные исследования процесса уширения
Результаты теоретического расчета
Findings
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.