Abstract

We investigated the effect of different levels of infestation by whiteflies, Bemisia argentifolii Bellows & Perring, on the growth and pigment concentrations of seedlings of zucchini, Cucurbita pepo L., that differed in their tolerance to squash silverleaf disorder. Genetically similar sister lines that were either tolerant (ZUC76-SLR) or susceptible (ZUC61) to silverleaf disorder exhibited reduced plant height, internode length, plant dry weight, and petiole length in response to whitefly feeding. Similar plant growth responses to whitefly feeding were observed despite that the foliage of ZUC61 silvered severely, whereas the foliage of ZUC76-SLR showed no silvering in a greenhouse experiment conducted in the spring and showed only minimal silvering in a similar greenhouse experiment conducted in the fall. In plants of both sister lines infested with 50 pairs of whiteflies and their progeny, petioles, but not the leaf blades, of uninfested leaves had reduced chlorophyll content. In another experiment, two different genetic sources of tolerance to silverleaf disorder (ZUC33-SLR/PMR and ZUC76-SLR) and a commercial silverleaf-susceptible zucchini hybrid ('Zucchini Elite') responded similarly to whitefly feeding, except the tolerant genotypes did not exhibit leaf silvering. All genotypes, silverleaf tolerant or not, had reduced dry weight, plant height, and internode length that became more pronounced as whitefly infestation increased. All genotypes had reduced levels of chlorophylls and carotenoids in uninfested young leaf blades and petioles from infested plants. Petioles, however, were more affected by feeding than leaf blades, showing a 66% reduction in chlorophylls a+b and carotenoids at the lowest infestation level (30 pairs of whitefly and their progeny), whereas pigments in leaf blades declined more slowly in response to whitefly feeding density, averaging 14-15% less at the highest infestation level (90 pairs of whitefly and their progeny). We conclude that tolerance to silverleaf disorder does not prevent stunting in zucchini seedlings nor does it protect against the systemic loss of photosynthetic and protoprotectant pigments induced by feeding of B. argentifolii whiteflies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.