Abstract
The fracture characteristics of bedded sandstone determine the stability and safety of in situ coal gasification technology. Four semicircular stratified sandstone specimens with different strengths (0.3, 0.6, 1.0, and 1.5 times that of rock matrix) and seven different bedding angles (θ = 0°, 15°, 30°, 45°, 60°, 75°, and 90°) were numerically simulated using RFPA2D-Basic V2.0 software. The SCB specimen had no prefabricated crack, and its radius was 25 mm. The loading rate was 0.000001 m/step. The results show that the fracture characteristics of the sandstone are affected by both the strength of the laminae and the angle; the fracture toughness and peak strength of the ultra-weak sandstone, as well as the weak sandstone, are reduced and more easily affected by the bedding angle; the strength rate of the strong sandstone is higher than that of the homogeneous sandstone, and the difference between the fracture characteristics of the two is not significant. This paper suggests that the key mechanism of this phenomenon is the anisotropy between the bedding and the sandstone, along with the competition/synergy between the main crack and the bedding plane bias crack during fracture propagation. These research results can provide a theoretical reference for the safety and stability of underground engineering in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.