Abstract

AbstractThe dependence of nanoparticle size distributions on laser intensity profile was determined during infrared femtosecond laser ablation of silver targets in air. Laser parameters were adjusted to ablate at the same peak fluence with spatially homogeneous (flat-top) and inhomogeneous (Gaussian) intensity distributions formed by diffractive optical elements. Aerodynamic particle size was measured online by an electric low-pressure cascade impactor. Narrower size distributions were detected for the flat-top intensity profile in the fluence range from 0.6 to 4.4 J/cm2, while the Gaussian beam produced broad and bimodal distributions. The aerodynamic number frequency of the primary nanoparticulate fraction (40 nm) was equal to the number frequency of the submicron agglomerate fraction (200 nm) at laser fluence of 1 J/cm2. The Feret diameter of primary particles was 80 nm. Geometrical interpretation of the irradiated spots at the corresponding laser fluence regimes explains the formation of bimodal (submicron and nanoparticulate) size distribution in the case of Gaussian beams. The bimodality is attributed to different thermalization pathways during laser ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.