Abstract

Electrical conductivity and optical transmittance of nickel nanowire (Ni-NW) networks are reported in this work. The Ni-NWs were irradiated with 3.5, 3.8 and 4.11[Formula: see text]MeV proton (H[Formula: see text]) ions at room temperature. The electrical conductivity of Ni-NW networks was observed to increase with the increase in beam energies of H[Formula: see text] ions. With the increase in ions beam energies, electrical conductivity increases and this may be attributed to a reduction in the wire–wire point contact resistance due to the irradiation-induced welding of NWs. Welding is probably initiated due to H[Formula: see text] ion-irradiation induced heating effect that also improved the crystalline quality of the NWs. After ion beam irradiation, localized heat is generated in the NWs due to ionization which was also verified by SRIM simulation. Optical transmittance is increased with increase in the energy of H[Formula: see text] ions. The Ni-NW networks subjected to an ion beam irradiation to observe corresponding changes in electrical conductivity and optical transparencies are promising for various nanotechnological applications, such as highly transparent and conducting electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.