Abstract

Abstract Cadmium oxide (CdO) thin films were synthesized using chemical bath deposition (CBD) method from aqueous cadmium nitrate solution. The bath temperatures were maintained at room temperature (25 °C) and at higher temperature (80 °C). The structural studies revealed that the films showed mixed phases of CdO and Cd(OH)2 with hexagonal/monoclinic crystal structure. Annealing treatment removed the hydroxide phase and the films converted into pure CdO with cubic, face centered crystal structure. SEM micrographs of as-deposited films revealed nanowire-like morphology for room temperature deposited films while nanorod-like morphology for high temperature deposited films. However, cube-like morphology was observed after air annealing. Elemental composition was confirmed by EDAX analysis. Band gap energies of the as-deposited films varied over the range of 3 eV to 3.5 eV, whereas the annealed films showed band gap energy variation in the range of 2.2 eV to 2.4 eV. The annealed films were successfully investigated for NH3 sensing at different operating temperatures and at different gas concentrations. The room temperature synthesized film showed a response of 17.3 %, whereas high temperature synthesized film showed a response of 13.5 % at 623 K upon exposure to 24 ppm of NH3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.