Abstract

Purpose: Segmentation of the vessel tree from retinal fundus images can be used to track changes in the retina and be an important first step in a diagnosis. Manual segmentation is a time-consuming process that is prone to error; effective and reliable automation can alleviate these problems but one of the difficulties is uneven image background, which may affect segmentation performance. Approach: We present a patch-based deep learning framework, based on a modified U-Net architecture, that automatically segments the retinal blood vessels from fundus images. In particular, we evaluate how various pre-processing techniques, images with either no processing, N4 bias field correction, contrast limited adaptive histogram equalization (CLAHE), or a combination of N4 and CLAHE, can compensate for uneven image background and impact final segmentation performance. Results: We achieved competitive results on three publicly available datasets as a benchmark for our comparisons of pre-processing techniques. In addition, we introduce Bayesian statistical testing, which indicates little practical difference ( ) between pre-processing methods apart from the sensitivity metric. In terms of sensitivity and pre-processing, the combination of N4 correction and CLAHE performs better in comparison to unprocessed and N4 pre-processing ( ); but compared to CLAHE alone, the differences are not significant ( to 0.88). Conclusions: We conclude that deep learning is an effective method for retinal vessel segmentation and that CLAHE pre-processing has the greatest positive impact on segmentation performance, with N4 correction helping only in images with extremely inhomogeneous background illumination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call