Abstract

Compaction induced by pore-pressure decrease inside a reservoir can be monitored by measuring traveltime shifts of reflection events on time-lapse seismic data. Recently we introduced a perturbation-based formalism to describe traveltime shifts caused by the 3D stress-induced velocity field around a compacting reservoir. Application of this method to homogeneous background models showed that the offset variation of traveltime shifts is controlled primarily by the anisotropic velocity perturbations and can provide valuable information about the shear and deviatoric stresses. Here, we model and analyse traveltime shifts for compacting reservoirs whose elastic properties are different from those of the surrounding medium. For such models, the excess stress is influenced primarily by the contrast in the rigidity modulus μ across the reservoir boundaries. Synthetic examples demonstrate that a significant (25% or more) contrast in μ enhances the isotropic velocity perturbations outside the reservoir. Nevertheless, the influence of background heterogeneity is mostly confined to the reservoir and its immediate vicinity and the anisotropic velocity changes are still largely responsible for the offset dependence of traveltime shifts. If the reservoir is stiffer than the host rock, the background heterogeneity reduces anisotropic velocity perturbations inside the reservoir but increases them in the overburden. As a result, in this case, the magnitude of the offset variation of traveltime shifts is generally higher for reflections from interfaces above the reservoir. We also study compaction-induced stress/strain and traveltime shifts for a stiff reservoir embedded in a softer layered model based on velocity profiles from the Valhall Field in the North Sea. Despite producing discontinuities in strain across medium interfaces, horizontal layering does not substantially alter the overall behaviour of traveltime shifts. The most pronounced offset variation of traveltime shifts is observed for overburden events recorded at common midpoints close to the reservoir edges. On the whole, prestack analysis of traveltime shifts should help better constrain compaction-induced velocity perturbations in the presence of realistic background heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.