Abstract

A series of α-diimine ligands with different substituents on the acenaphthyl backbone were synthesized and characterized. The corresponding Ni(II) and Pd(II) complexes were prepared and used in ethylene polymerization and copolymerization with methyl acrylate. In ethylene polymerization, these Ni(II) complexes showed activities of up to 1.6 × 107 g/((mol of Ni) h), generating polyethylene with a molecular weight (Mn) of up to 4.2 × 105. Interestingly, these Ni(II) complexes behave very similarly in ethylene polymerization except for the complex with two methoxy substituents on the ortho position of the acenaphthyl backbone, in which case about 3 times higher polyethylene molecular weight and much lower branching density were observed. The ligand substituent effect is much more dramatic for the Pd(II) complexes. In ethylene polymerization, activities of up to 1.7 × 105 g/((mol of Pd) h) and a polyethylene molecular weight (Mn) of up to 4.7 × 104 could be obtained. The Pd(II) complex with two methoxy substi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.