Abstract

We designed and synthesized two donor-acceptor type conjugated polymers, the regioirregular polymer RI-PDPP-CNTVT-6 and its regioregular counterpart RR-PDPP-CNTVT-6, based on diketopyrrolopyrrole (DPP) and alkylated dithienylacrylonitrile (CNTVT) units. Among them, the 2-decyltetradecyl side chain on the DPP acceptor unit and the hexyl side chain on the CNTVT donor unit were used to ensure enough solubility for them. The backbone regioregularity was used to tune electronic structures and carrier transport of the conjugated system. The two conjugated polymers were characterized for their thermal, photophysical, electrochemical, and solution-processable properties, thin-film microstructures, and morphologies. The top-gate bottom-contact configuration organic field-effect transistor (OFET) devices based on these two conjugated polymers showed excellent ambipolar performances. Remarkably, the regioirregular polymer RI-PDPP-CNTVT-6 exhibited higher charge-carrier mobilities than the regioregular counterpart polymer RR-PDPP-CNTVT-6 did, as their highest hole/electron mobilities (μhmax/μemax) were 1.48/1.27 and 0.48/0.052 cm2 V-1 s-1, respectively. Moreover, the influence of backbone regioregularity on its thermal stability, electrochemical and photophysical properties, solution processability, and charge-carrier mobility was intensively studied. Our results afforded a promising pathway toward the development of excellent ambipolar OFETs with high performance, good solution processability, and thermal stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.