Abstract

Herein, magnesium metatitanate (MgTiO3) ceramics were synthesised using recycled magnesia-hercynite (MH) bricks as the raw materials to achieve solid waste reusing of cement kiln refractories. The recycled MH materials were mixed with anatase TiO2 to investigate the effect of addition of doped B2O3 during the synthesis of MgTiO3 ceramics at 1400 °C. Phase compositions and microstructural studies were performed using x-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. In addition, energy-dispersive spectroscopy (EDS) was conducted and the dielectric properties of the samples were studied. Results show that the addition of B2O3 can promote sintering, improve shrinkage, promote densification, stabilise MgTiO3 lattice, and inhibit the formation of MgTiO3. In addition, the presence of appropriate amount of B2O3 can accelerate the material diffusion and result in grain growth through the formation of intercrystalline liquid phase. Results also suggest that an increase in dielectric constant results in a decrease in dielectric loss. It was concluded that 2 wt% was the optimum amount of B2O3 required to obtain the most favourable synthesis rate of MgTiO3 (98.2%). The samples exhibited a maximum density of 3.69 g·cm−3 and excellent microwave dielectric properties at ε r = 18.28 and tanδ = 0.086.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.