Abstract

A series of Au/TiO2 catalysts for CO oxidation with same Au loading but different Au nanoparticles (NPs) sizes were prepared by varying the calcination temperatures and biomass concentration via a biosynthetic approach. The resulting catalysts were characterized by DRUV–vis, TEM, and TG techniques. The experimental results showed that the activity of the gold catalysts for CO oxidation was very sensitive to the particle size. Among the tested catalysts, the one with mean size of 3.8 nm was the most active. As determined by TEM, the contact boundary between the Au NPs and the TiO2 support was related to the size of the Au NPs. For the most active catalyst, hemispherical Au NPs (3.8 ± 0.6 nm) had the best contact boundary with the TiO2 support, yielding the longest perimeter interface, suggesting that the contact boundary was the most critical factor for the CO oxidation. The in-situ FTIR study of CO adsorption on the catalysts showed that CO was not adsorbed on the Au surface. This might be due to the modification of the Au/TiO2 catalysts by the residual biomass. The intensity of the peak at 2185 cm–1 for the Au/TiO2 catalysts with the longest perimeter interface was highest, demonstrating that the Au–TiO2 contact boundary played an important role in the adsorption of CO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call