Abstract

Scanning tunneling microscope (STM) induced luminescence can be used to study various optoelectronic phenomena of single molecules and to understand the fundamental photophysical mechanisms involved. To clearly observe the molecule-specific luminescence, it is important to improve the quantum efficiency of molecules in the metallic nanocavity. In this work, we investigate theoretically the influence of an atomic-scale protrusion on the substrate on the emission properties of a point dipole oriented parallel to the substrate in a silver plasmonic nanocavity by electromagnetic simulations. We find that an atomic-scale protrusion on the substrate can strongly enhance the quantum efficiency of a horizontal dipole emitter, similar to the situation with a protrusion at the tip apex. We also consider a double-protrusion junction geometry in which there is an atomic-scale protrusion on both the tip and the substrate, and find that this geometry does provide significantly enhanced emission compared with the protrusion-free situation, but does not appear to improve the quantum efficiency compared to the mono-protrusion situation either at the tip apex or on the substrate. These results are believed to be instructive for future STM induced electroluminescence and photoluminescence studies on single molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.