Abstract

Carbon nanotube assemblies are expected to find application in many areas of technology. Therefore, it is of paramount importance to understand and predict their performance in different ambient conditions. Here, we explore the influence of air exposure on the electrical conduction in carbon nanotube fibres and films produced via floating catalyst chemical vapour deposition. We recognise that on top of the previously well-explored oxygen doping effect these macroscopic materials are also significantly affected by humidity. The adsorption of water vapour causes an increase in the weight of the assemblies, increase in electrical conductivity at room temperature or changes in the resistance-temperature dependence at low temperatures. It is suggested that the water vapour is mainly adsorbed by the standard clustering mechanisms observed in other carbon materials, but the mechanisms responsible for the improvement in electrical performance are much more debatable. We present a strong indication that the carbon nanotubes are neither n-doped nor p-doped by water molecules and provide further discussion on the potential role of water in the electrical transport of carbon nanotube assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.