Abstract

Interactive effects of increasing atmospheric CO2 with resource limitations on production of surface wax in plants have not been studied. Pinus palustris seedlings were grown for 1 yr at two levels of soil N (40 or 400 kg N_ha-1_yr-1) and water stress (-0.5 or -1.5 MPa xylem pressure potential) in open-top field chambers under two levels of CO2 (365 or 720 mumol/mol). Needle surface wax content was determined at 8 mo (fall) and 12 mo (spring) and epicuticular wax morphology was examined using scanning electron microscopy (SEM) at 12 mo. Wax content expressed on both a leaf area and dry mass basis was increased due to main effects of low N and water stress. No main effects of CO2 were observed; however, a CO2 x N interaction at 12 mo indicated that under low soil N the elevated CO2 treatment had less wax (surface area or dry mass basis) compared to its ambient counterpart. Morphologically, low N needle surfaces appeared rougher compared to those of high N needles due to more extensive wax ridges. Although the main effect of water treatment on wax density was not reflected by changes in wax morphology, the CO2 x N interaction was paralleled by alterations in wax appearance. Decreases in density and less prominent epicuticular wax ridges resulting from growth under elevated CO2 and limiting N suggest that dynamics of plant/atmosphere and plant/pathogen interactions may be altered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.