Abstract

Using daily minimum temperature data at 2481 stations provided by the National Meteorological Information Center (China) and the daily reanalysis data from NCEP/NCAR during the period from 1980 to 2019, the effects of atmospheric low frequency oscillations (LFOs) on the regional strong cooling events (RSCEs) in the winter of northern China are investigated, and the extended range forecast signals of the RSCEs are extracted. The results show that: (1) The frequency of RSCEs is higher before the year 2000 and then decreases, but its interannual variability increases. There are 10–20, 20–30 and 30–60 d significant low frequency periods in the regional average minimum temperature in northern China, and the low frequency oscillation with a period of 10–20 d is the most significant. (2) The low frequency key systems affecting RSCEs in the west, middle, and east of northern China are the Ural blocking high and the trough of Lake Balkhash-Baikal (Lake Ba-Bei), the blocking high in the northwest and the low trough in the southeast of Lake Ba-Bei, the Lake Ba-Bei blocking high and the East Asian trough, respectively, and the Siberian High (SH) that expands and moves with the blocking high all the time. The low frequency jets at the upper level are weaker in the north and stronger in the south. (3) The low frequency high potential vorticity (PV) center in the lower stratosphere moves eastward and southward along the 315 K isentropic surface via the north of Lake Ba-Bei, southern Lake Baikal and Northeast China to the Sea of Japan, causing the 2 PVU line to move southward and then the above-mentioned high PV center in the mid-high troposphere to extend vertically. Meanwhile, under the influence of gradually increasing upper level jets and vertical meridional circulation, the high PV column continues to propagate downward to the mid-low troposphere at lower latitudes along the 300–315 K isentropic surfaces, which enhances the low frequency positive vorticity and deepens the key trough. In addition, the convergence in the upper troposphere, the divergence in the lower layer, and the development of descending motion behind the trough lead to the development and southward movement of the SH. (4) At −10 d, the positive and negative low frequency anomalies at 500 hPa geopotential height appearing in the East European Plain and Western Siberian Plain are the extended range forecast signals for RSCEs in the winter of northern China, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call